ABSTRACT
We present Quiver, a system that coordinates service proxies placed at the edge of the Internet to serve distributed clients accessing a service involving mutable objects. Quiver enables these proxies to perform consistent accesses to shared objects by migrating the objects to proxies performing operations on those objects. These migrations dramatically improve performance when operations involving an object exhibit geographic locality, since migrating this object into the vicinity of proxies hosting these operations will benefit all such operations. This system reduces the workload in the server. It performs the all operations in the proxies itself. In this system the operations performed in First-In-First-Out process. This system handles two process serializability and strict serializabilty for durability in the consistent object sharing . Other workloads benefit from Quiver, dispersing the computation load across the proxies and saving the costs of sending operation parameters over the wide area when these are large. Quiver also supports optimizations for single-object reads that do not involve migrating the object. We detail the protocols for implementing object operations and for accommodating the addition, involuntary disconnection, and voluntary departure of proxies. Finally, we discuss the use of Quiver to build an e-commerce application and a distributed network traffic modeling service.
TABLE OF CONTENT
TITLE PAGE
CERTIFICATION
APPROVAL
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
1.0 INTRODUCTION
1.1 STATEMENT OF PROBLEM
1.2 PURPOSE OF STUDY
1.3 AIMS AND OBJECTIVES
1.4 SCOPE/DELIMITATIONS
1.5 LIMITATIONS/CONSTRAINTS
1.6 DEFINITION OF TERMS
CHAPTER TWO
2.0 LITERATURE REVIEW
CHAPTER THREE
3.0 METHODS FOR FACT FINDING AND DETAILED DISCUSSIONS OF THE SYSTEM
3.1 METHODOLOGIES FOR FACT-FINDING
3.2 DISCUSSIONS
CHAPTER FOUR
4.0 FUTURES, IMPLICATIONS AND CHALLENGES OF THE SYSTEM
4.1 FUTURES
4.2 IMPLICATIONS
4.3 CHALLENGES
CHAPTER FIVE
5.0 RECOMMENDATIONS, SUMMARY AND CONCLUSION
5.1 RECOMMENDATION
5.2 SUMMARY
5.3 CONCLUSION
5.4 REFERENCES
Disclaimer: Note this academic material is intended as a guide for your academic research work. Do not copy word for word. Note: For Computer or Programming related works, some works might not contain source codes
CITE THIS WORK
(2014, 08). Quieve: Consistent Object Sharing For Edge Service.. ProjectStoc.com. Retrieved 08, 2014, from https://projectstoc.com/read/2781/quieve-consistent-object-sharing-for-edge-service-5040
"Quieve: Consistent Object Sharing For Edge Service." ProjectStoc.com. 08 2014. 2014. 08 2014 <https://projectstoc.com/read/2781/quieve-consistent-object-sharing-for-edge-service-5040>.
"Quieve: Consistent Object Sharing For Edge Service.." ProjectStoc.com. ProjectStoc.com, 08 2014. Web. 08 2014. <https://projectstoc.com/read/2781/quieve-consistent-object-sharing-for-edge-service-5040>.
"Quieve: Consistent Object Sharing For Edge Service.." ProjectStoc.com. 08, 2014. Accessed 08, 2014. https://projectstoc.com/read/2781/quieve-consistent-object-sharing-for-edge-service-5040.
- Related Works
- Design And Implementation Of Computerized Hospital Information Management System
- Design And Implementation Of A Computerised Registration System For Universal Basic Education (a Case Study Of Delta State)
- Addressing Principles Used In Tcp/ip Protocols
- Design And Implementation Of A Product Distribution Management System A Case Study Fo Nigeria Breweries Limited 9th Mile Corner Enugu
- Web Base Proxy Server An Overviewed Of Issues And Prospects
- Design And Implementation Of A Computerised Human Resources Management System (a Case Study Of Emenite Plc)
- Multimedia Conferencing
- Design Of A Computerized Personnel Appraisal System Case Study Of College Of Education, Agbor.
- A Computerized Bank Savings Account, Processing System
- Design And Implementation Of Computerised Case Filling System (a Case Study Of Enugu High Court Enugu.)