ABSTRACT
This research investigated the phytochemical and anti-inflammatory properties of methanol extract of Crateva adansonii stem bark. Although several edible and non-edible plants parts are used in inflammatory treatment, many record has been found of the use of Crateva adansonii stem bark. For this research, fresh stem bark of Crateva adansonii were collected from Asata village in Enugu State. The cuttings were authenticated at the Bioresource development centre. They were then dried at room temperature for one month in an open lab space, grounded into powder and weighed on a beam balance as 460.6g. The powder was soaked for twenty-four to fourty-eight hours in methanol to get a methanol extract and then concentrated into paste at a set temperature range of 30-550C in a water bath. A population of twenty adult wistar Albino rats was used for anti-inflammatory test. The rats were divided into five (5) groups of four (4) albino rats each. They were administered 3% tween-80 mixed with dichloromethane extract of Crateva adansonii and the control was administered with 0.5ml of 3% tween-80. Acute inflammation was induced an hour after test substances were administered by injecting egg albumin in the subplanter region of the right hind paw and edema assessed by mercury displacement for a period of 0-180 minutes. Anti-inflammatory effect was significant within 30 minutes of induced edema with inhibition occurring in three phases of 0-30, 30-60, 60-90. 90-120 to 180 minutes. Inhibition was highest at the third phase. Crateva adansonii barks showed anti-inflammatory effect by inhibiting “prostaglandin” synthesis an inflammatory mediator
TABLE OF CONTENTS
Title Page ---------------------------------------------------------------------i
Certification Page-----------------------------------------------------------ii
Dedication--------------------------------------------------------------------iii
Acknowledgements---------------------------------------------------------iv
Abstract-----------------------------------------------------------------------v
Table of Contents-----------------------------------------------------------vi
CHAPTER ONE
1.0 Introduction----------------------------------------------------------1
1.2 Crateva Adansonii as a Plant-------------------------------------5
1.3 Distribution-----------------------------------------------------------6
1.4 Scientific Classification---------------------------------------------6
1.5 Properties -------------------------------------------------------------7
1.6 Research Aim and Objectives-------------------------------------8
1.7 Background of Study------------------------------------------------8
CHAPTER TWO
LITERATURE REVIEW
2.0 Definition of Inflammation---------------------------------------10
2.1 Principle of Inflammation ---------------------------------------10
2.2 Types of Inflammation -------------------------------------------12
2.3 Categories of Inflammation Mediated by the Immune System-----------13
2.4 Mediators of Inflammation---------------------------------------22
2.5 Histamine and Serotonin------------------------------------------29
2.6 The Coagulation Mechanism-------------------------------------30
2.7 Fibrinolysis-----------------------------------------------------------35
2.8 The Kinin – Forming System--------------------------------------36
2.9 Inflammation and Diseases ----------------------------------------40
2.10 Ways of Treating Inflammation-----------------------------------40
2.11 Immune Selective Anti-inflammatory ---------------------------42
2.12 The Use of Herbs in the Treatment of Inflammation---------43
2.13 Anti-Inflammatory Drugs------------------------------------------44
2.14 Phytochemicals-------------------------------------------------------46
2.15 Glycoside---------------------------------------------------------------47
2.16 Flavonoids--------------------------------------------------------------47
2.17 Tannins-----------------------------------------------------------------49
2.18 Saponins---------------------------------------------------------------49
CHAPTER THREE
3.1 MATERIALS -------------------------------------------------------- 51
3.1.1 Equipment/Apparatus Used -------------------------------------- 51
3.1.2 Animal Used---------------------------------------------------------- 54
3.2.1 Methodology ---------------------------------------------------------- 55
3.2.2 Extraction-------------------------------------------------------------- 56
3.2.3 Preparation of Reagents for Phytochemical ------------------- 56
3.2.3 Phytochemical Analysis of the Extract -------------------------- 57
3.2.5 Test for Alkaloide--------------------------------------------------- 57
3.2.6 Test for Saponin------------------------------------------------------ 58
3.2.7 Test for Terpenoids--------------------------------------------------58
3.2.8 Test for Anthraquinones -------------------------------------------58
3.2.9 Test for Coumarins---------------------------------------------------59
3.2.10 Test for Phlobatannins----------------------------------------------59
3.2.11 Test for Flavonoids--------------------------------------------------59
3.2.12 Test for Tannins------------------------------------------------------59
3.2.13 Test for Saponin------------------------------------------------------60
3.2.14 Test for Resins--------------------------------------------------------60
3.2.15 Test for Steroids and Terpenoids --------------------------------61
3.2.16 Test for Glycoside---------------------------------------------------61
3.2.17 Preparation of Reagents for Anti-Inflammatory Test--------62
3.2.18 Test for Anti – Inflammation Activity --------------------------62
3.2.19 Thin layer Chromatorgaphy (TLC)------------------------------65
3.2.20 How to Run A TLC Plate------------------------------------------66
CHAPTER FOUR
4.0 Extraction ------------------------------------------------------------73
4.1 Photochemical analysis of Crateva Adansonii Bark Extract-74
CHAPTER FIVE
5.1 Discussion -----------------------------------------------------------------75
5.2 Conclusion-----------------------------------------------------------------76
REFERENCES-------------------------------------------------------77
APPENDIX------------------------------------------------------------80
INTRODUCTION
Inflation is a Latin word (inflammare) which is translated means to set on fire. It is a complex biological response of vascular tissue to harmful stimuli such as pathogens, damaged cells irritant. Inflammation is the reaction of vascularized tissue to local injury caused by certain stimuli like infections, chemicals and biochemical agents, thermal or other physical trauma, antigen-antibody interaction etc (Carol, 1994). Without inflammatory response, wounds will not heal and minor infections would be over weening. Though inflammation aims at limiting damage and restoring function, some enzymes and toxic products within phagocytic cells are released to the extend of damaging the tissue. The advent of anti-inflammatory agents has made inflammation which as been a threat to human life due to its complex, multicontent, to loose its power. These anti-inflammatory agents or drugs help reduce, pain by inhibiting inflammation as opposed to opioids, which affects the central nervous system. It also prevent repairs, prevent and stop the consequences of inflammation by acting on the body responses without directly antagonizing the causative agent (Stedman, 2000). These anti-inflammatory process involves the process of balancing pro-inflammatory acute-phase reactants (Russell et al. 2000), altering biochemical pathway forming prostaglandins by inhibiting cyclooxygenase enzyme from catalyzing the reaction, as a result, suppress, compensate and correct the mechanical and structural abnormalities by assistive device. (Masumoto et al.2009).
The inflammatory reaction is phylogenetically and ontogenetically the oldest defense mechanism. The cells of immune system are widely distributed throughout the body, but if an infection or tissue damage occurs. It is necessary to concentrate them and their products at the site of damage.
Three major events occurring during this response:
1. An increased blood supply to the damaged tissue . It is performed by vasodilation. The inflamed tissue look like containing greater number of vessels.
2. Increased capillary permeability caused by retraction of the endothelial cells. This permits larger molecules than usual to escape from the capillaries, and thus allows the soluble mediators of immunity to reach the site of inflammation.
3. Leukocytes migrates out of the capillaries into the surrounding tissues. In the earliest stages of inflammation, neutrophils are particularly prevalent, but later monocytes and lymphocytes migrate towards the site of infection (Ashcroft et al.1999).
For the possibility of surrounding tissue damage, inflammatory responses must be well ordered and controlled. The body must be able to act quickly in some situations, for example to reduce or stop the lost of blood, whereas tissue repair can begin later. Therefore a wide variety of interconnected cellular and humoral (soluble) mechanisms are activated when tissue damage and infections occur. On the other hand, if injury is negligible, the body must have mechanisms which are able to stop tissue damage when the agent is removed. The development of inflammatory reactions is controlled by cytokines, products of plasma enzymes (complement, the coagulation clotting, kinin and fibrolytic pathways), by lipid mediators (prostaglandin and leukotrienes) released from different cells/ and by vasoactive mediators from the mast cells, basophils and platelets. These anti-inflammatory reactions differ. Fast-acting mediators such as vasoactive amines and the product of the kininsystem, modulate the immediate response. Later, newly synthesized mediators such as leukotrienes are involved in the accumulation and activation of other cells. However, in inflammatory reactions initiated by the immune system, the ultimate control is exerted by the antigen itself in the same ways it controls the immune response itself. For this reason, the cellular accumulation at the site of chronic infection or auto-immune reactions where antigen cannot ultimately be eradicated, is quiet different from the sites were antigenic stimulus can be rapidly cleared.
The nervous system can also participate in the control of inflammation especially axon reflexes, but inflammation may be realized in non-nervous tissues as well.
Inflammation may become chronic in certain settings where the acute process characterized by neutrophil infiltration and swelling gives way to predominance of mononuclear phagocytes and lymphocytes.This probably occurs to some degree with the normal healing process but becomes exaggerated and chronic when there’s ineffective elimination of foreign materials as in certain infections (e.g tuberculosis) or following introduction of foreign bodies (example asbestos) or deposition of crystals (example urate crystals). Chronic inflammation is often associated with fussion of mononuclear cells to form multinucleated gigantic cells, which eventually become granuloma. Chronic inflammation is seen under of delayed hypersensitivity (Nathan, 2002).
Disclaimer: Note this academic material is intended as a guide for your academic research work. Do not copy word for word. Note: For Computer or Programming related works, some works might not contain source codes
CITE THIS WORK
(2014, 07). Phytochemical And Anti-inflammatory Properties Of Methanol Extract Of Crateva Adansonii Stem Bark.. ProjectStoc.com. Retrieved 07, 2014, from https://projectstoc.com/read/2367/phytochemical-and-anti-inflammatory-properties-of-methanol-extract-of-crateva-adansonii-stem-bark-7677
"Phytochemical And Anti-inflammatory Properties Of Methanol Extract Of Crateva Adansonii Stem Bark." ProjectStoc.com. 07 2014. 2014. 07 2014 <https://projectstoc.com/read/2367/phytochemical-and-anti-inflammatory-properties-of-methanol-extract-of-crateva-adansonii-stem-bark-7677>.
"Phytochemical And Anti-inflammatory Properties Of Methanol Extract Of Crateva Adansonii Stem Bark.." ProjectStoc.com. ProjectStoc.com, 07 2014. Web. 07 2014. <https://projectstoc.com/read/2367/phytochemical-and-anti-inflammatory-properties-of-methanol-extract-of-crateva-adansonii-stem-bark-7677>.
"Phytochemical And Anti-inflammatory Properties Of Methanol Extract Of Crateva Adansonii Stem Bark.." ProjectStoc.com. 07, 2014. Accessed 07, 2014. https://projectstoc.com/read/2367/phytochemical-and-anti-inflammatory-properties-of-methanol-extract-of-crateva-adansonii-stem-bark-7677.
- Related Works
- Effect Of Different Organic And Inorganic Nitrogen Sources On The Kinetics Of The Breakdown Of Crude Oil Using Pseudomonas
- Preliminary Investigation On Effects Of Burantashi Extract On Lipoproteins Of Albino Male And Female Whistar Rats.
- Antimalaria And Antioxidant Effects Of Methanol And Flavonoid-rich Extracts Of Adansonia Digitata Stem Bark On Plasmodium Berghei-infected Mice
- The Effect Of Ethanol Extract Of Desmodium Velutinum Stem On Some Marker Emzyme In Liver Of Albino Wistar Rats
- The Oxidative Stress Status Of Rats Fed On Oil Bean Seed Meal.
- Phytochemical Screening And Invivo Antiplasmodial Activity Of Methanol Extract Of Baobab Leaves (adansonia Digitata)
- The Anti-inflammatory Activity Of Crateva Adansonii Dichloromethane Fraction
- Phytochemical Analysis And The Anti-inflammatory Activities Of Methanol Extract Of Crateva Adansonii
- Antilipidemic Effect Of Water (h20) Extract Of Desmodium Velutinum Leaves On Albino Wistar Rats
- The Effect Of N-hexane Extract Of Kola Nitida Bark On Liver Function Test Of Albino Wistar Rats Fed With High Fat From Cow‘s Brain.